Multi-agent learning using Fictitious Play and Extended Kalman Filter
نویسنده
چکیده
Decentralised optimisation tasks are important components of multiagent systems. These tasks can be interpreted as n-player potential games: therefore game-theoretic learning algorithms can be used to solve decentralised optimisation tasks. Fictitious play is the canonical example of these algorithms. Nevertheless fictitious play implicitly assumes that players have stationary strategies. We present a novel variant of fictitious play where players predict their opponents’ strategies using Extended Kalman filters and use their predictions to update their strategies. We show that in 2 by 2 games with at least one pure Nash equilibrium and in potential games where players have two available actions, the proposed algorithm converges to the pure Nash equilibrium. The performance of the proposed algorithm was empirically tested, in two strategic form games and an ad-hoc sensor network surveillance problem. The proposed algorithm performs better than the classic fictitious play algorithm in these games and therefore improves the performance of game-theoretical learning in decentralised optimisation.
منابع مشابه
Emergence of Game Strategy in Multiagent Systems
In this thesis we focused on subsymbolic approach to machine game play problem. We worked on two different methods of learning. Our first goal was to test the ability of common feed-forward neural networks and the mixture of expert topology. We have derived reinforcement learning algorithm for mixture of expert network topology. This topology is capable to split the problem into smaller parts, ...
متن کاملIMPLEMENTATION OF EXTENDED KALMAN FILTER TO REDUCE NON CYCLO-STATIONARY NOISE IN AERIAL GAMMA RAY SURVEY
Gamma-ray detection has an important role in the enhancement the nuclear safety and provides a proper environment for applications of nuclear radiation. To reduce the risk of exposure, aerial gamma survey is commonly used as an advantage of the distance between the detection system and the radiation sources. One of the most important issues in aerial gamma survey is the detection noise. Various...
متن کاملTime Delay and Data Dropout Compensation in Networked Control Systems Using Extended Kalman Filter
In networked control systems, time delay and data dropout can degrade the performance of the control system and even destabilize the system. In the present paper, the Extended Kalman filter is employed to compensate the effects of time delay and data dropout in feedforward and feedback paths of networked control systems. In the proposed method, the extended Kalman filter is used as an observer ...
متن کاملA New Adaptive Extended Kalman Filter for a Class of Nonlinear Systems
This paper proposes a new adaptive extended Kalman filter (AEKF) for a class of nonlinear systems perturbed by noise which is not necessarily additive. The proposed filter is adaptive against the uncertainty in the process and measurement noise covariances. This is accomplished by deriving two recursive updating rules for the noise covariances, these rules are easy to implement and reduce the n...
متن کاملMobile Robot Navigation Error Handling Using an Extended Kalman Filter
Obviously navigation is one of the most complicated issues in mobile robots. Intelligent algorithms are often used for error handling in robot navigation. This Paper deals with the problem of Inertial Measurement Unit (IMU) error handling by using Extended Kalman Filter (EKF) as an Expert Algorithms. Our focus is put on the field of mobile robot navigation in the 2D environments. The main chall...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1301.3347 شماره
صفحات -
تاریخ انتشار 2013